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In nonstationary environments, it is diÆcult to apply traditional Genetic Algorithms(GAs)
because they use strong selection pressure and lose the diversity of individuals rapidly.
We propose a GA with neutral variation that can track environmental changes. The idea
of this GA is inspired by Kimura's neutral theory. The scheme of this GA allows neutral
characters, which do not directly a�ect the �tness with respect to environments, thus
increasing the diversity of individuals. In order to demonstrate the properties of this
GA, we apply it to a permutation problem called Ladder-Network, of which the imposed
alignment on the output changes regularly. We show that the GA with neutral variation
can adapt better to environmental changes than a traditional GA.

Keywords: Genetic Algorithm, Neutral Variation, Self-Adaptability, Nonstationary Environment,
Ladder-Network.

1 Introduction

In the application of Genetic Algorithms(GAs)(Holland [1975], Goldberg [1989], Mitchell [1996], Fogel [2000],
Forrest [1993]) to optimization problems, adoption of strong selection pressure accelerates the evolution
of a population and enhances the optimization performance. Strong selection pressure, however, can be
detrimental in practical applications, since it limits the diversity of the population that is evolving. This
problem especially manifests itself in nonstationary environments, because to allow a GA to track solutions
eÆciently, population diversity covering a signi�cant part of the solution-space is indispensable. That is,
it is diÆcult for traditional GAs to track nonstationary environments if the diversity of individuals is lost
rapidly due to a strong selection pressure.
It is important to maintain diversity in GAs, from the viewpoints both of tracking nonstationary envi-

ronments and of �nding optimal solutions of multi-modal functions. Therefore, many studies focus on this
problem. They are divided into three major groups.
One way to cope with nonstationary environments is to introduce new genetic operators into the frame-

work of GA. Cobb proposed the so-called Triggered Hypermutation operator that increases the mutation
rate temporarily upon a detected decrease of the time-averaged best performance(Cobb [1990], Cobb and
Grefenstette [1993]). A higher mutation rate can change the composition of a population, thereby enabling
GA with Triggered Hypermutation to track environmental change. A more direct way to change the com-
position is Random Immigration, proposed in (Grefenstette [1992]), which replaces some individuals of a
population with ones of which genotypes are perfectly at random in every generation.
Both Triggered Hypermutation and Random Immigration aim to increase the diversity of the population.

Instead of increasing diversity, it is also possible to preserve it: Goldberg and Richardson proposed the shared
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�tness function to evaluate the aÆnity of individuals(Goldberg and Richardson [1987]). According to this
scheme, an increase in the number of individuals with a similar genotype(or phenotype) causes a decrease to
their �tness, so population diversity is maintained. Another example of this technique is Thermodynamical
GA(TDGA), proposed by Mori, which also uses the evaluation of diversity in the �tness function(Mori et al.
[1995]).
Another way to cope with nonstationary environments is to expand the memory of a chromosome or of

a population. Chromosome memory is typically expanded by the use of a diploid (pair of chromosomes) or
a multiploid (group of chromosomes), as proposed in (Goldberg and Smith [1987], Dasgupta and McGregor
[1992], Hadad and Eick [1997]). The diploid or multiploid representation is translated to a haploid (single
chromosome) representation by using a dominance operator. This representation can be handled in the
framework of traditional GA and at the same time carry redundant information. Population-based memory
is typically expanded by storing individuals that have good performance to be re-introduced in later gener-
ations. In GA with a Case-based Memory, the worst individuals are replaced by the best individuals from
previous generations when environmental changes are detected (Eggermont et al. [2001]). The Immune Algo-
rithm(IA), inspired by the natural immune system, is another population-based memory approach (Fukuda
et al. [1999]). To adapt a population, IA uses a memory for storing and retrieving past solutions.
One more way to cope with nonstationary environments is increasing the geographical spread of a popula-

tion, thereby stimulating population diversity in a spatial way. In nature examples of this are subpopulations
separated by mountain ranges or water, which eventually might lead to di�erent subspecies. In the context
of GA, this method is employed in (Collins and Je�erson [1991], Sarma and Jong [1999]). In these studies,
the genetic information(or a population) is spatially distributed and their local neighborhood is de�ned.
Mating between individuals(crossover) is restricted within their neighborhood, which is di�erent from the
traditional GAs where any individual has the potential for mating with any other. This setting prevents
individuals to be homogeneous, so the diversity of a population is maintained.
Our strategy for constructing a GA that can track nonstationary environments is to use neutrality to the

heredity of an individual without introducing new operators (Matsui et al. [1997], Isokawa et al. [1999]). This
idea is inspired by Kimura's neutral theory of molecular evolution (Kimura [1983], Avise [1994]). In neutral
theory, some of the heredity in an individual is una�ected by (or, in other words, neutral to) selection pressure,
unlike orthogenesis, and allowed to be determined by chance, i.e., by so-called random genetic drift. This
results in redundancy of the heredity of individuals, thus diversifying a population. Redundancy of genetic
information, having hardly been regarded as important from the viewpoint of eÆciency and performance
in engineering, has invited only few examinations about the e�ect of the existence of neutral mutations.
We believe, however, that it is an important framework to study evolutionary systems in nonstationary
environments, and to obtain e�ective GAs for problems in such environments.
In this paper, we further proceed the model of a GA with neutral variation (Matsui et al. [1997], Isokawa

et al. [1999]) by enlarging the scale of simulations and exploring the ability of this GA more quantitatively.
We apply our GA to a permutation problem, a useful example being the so-called Ladder-Network, which is
a network that permutes symbols in a string in accordance to its topology. This network allows the existence
of neutral factors in the representation of its permutation function, and thus o�ers a good framework to test
our proposed strategy by simulations.

2 Models and Methods

The permutation problem is de�ned as the problem of �nding a description of a function that performs a
certain permutation. Various descriptions can be candidates for this problem. Among them, the Ladder-
Network serves as a suitable function description for our purposes: it performs permutations, and it incor-
porates neutral factors.
The Ladder-Network consists of a set of vertical bars, each of which can be connected to its direct neigh-

boring bar(s) by horizontal bars(rungs). Its input consists of strings containing a number of symbols equal
to the number of vertical bars. Each symbol ows downwards along the vertical bar it is on, and upon
encountering a rung, it moves along the rung toward the opposing vertical bar, after which it continues its
journey downward, following the same procedure of exchanging bars along rungs, until it �nally arrives at
the output side at the bottom of the network (see Fig.1). Obviously, this procedure results in a permutation
of the input string at the output side of the network. For example, the input string (ABCD) is changed
into (BDCA) by the network in Fig.1. It is noted that the movement of a symbol encountering rungs which
connect at the same height to both sides of one vertical bar as in Fig.2 is unde�ned, and we do not treat
this kind of networks.
The Ladder-Network described above has a neutral factor with respect to its functionality because there
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Figure 1: An example of Ladder-Network and its permutation between input and output strings.

defined undefined

Figure 2: The connecting form of rungs to a vertical bar (surrounded by the dotted circle).
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Figure 3: An example in which the permutation is invariant under the deletion of a double rung.

is a multitude of networks that achieve a certain permutation. Such a case occurs if, due to the placement
of a multitude of rungs between two vertical bars, the output of the network is the same as when the rungs
would be absent, for example in Fig.3. The structure of the network shown in Fig.3(a) is di�erent from the
one shown in Fig.3(b), but the output permutations of these two networks are the same. In other words,
the Ladder-Network in Fig.3 has a neutral factor.
To design a GA for �nding a Ladder-Network structure that performs a given permutation, the network is

encoded by a genotype. Encoding the genotype of a Ladder-Network is done in the following way. First, the
actual Ladder-Network (Fig.4(a)) is deformed in a topology-preservingway, such that it can be projected onto
a checkerboard-like lattice, each shaded cell of which contains at most one rung (Fig.4(b)). Then, the value
1 or 0 is given to each shaded lattice cell depending on whether a rung is present or not in the cell (Fig.4(c)).
Finally, the genotype of the Ladder-Network is obtained by rearranging the lattice into a one-dimensional
sequence (Fig.4(d)). By this procedure, we acquire the genotype g(i) of the Ladder-Network, where i is the
index of the Ladder-Network. We de�ne the phenotype of a Ladder-Network as the permutation it imposes
on its input. Clearly, a Ladder-Network's genotype unambiguously determines its phenotype, but not the
other way around.
Considering that the problem to be solved is �nding a Ladder-Network that performs a certain target

permutation, we de�ne the �tness of a Ladder-Network in terms of how near its associated permutation is
to the target permutation. Let us consider a set fx1; � � � ; xng and the sequences X� = (x�1; � � � ; x�n) and
X� = (x�1; � � � ; x�n), with x�i; x�i 2 fx1; � � � ; xng.
The distance between X� and X� is de�ned by:

distance(X�;X�) =
X

i

jPos(X�; xi)� Pos(X�; xi)j (1)

where Pos(X; xi) means the position of xi in the array X = (x1; � � � ; xn).
For example, the distance between X� = (ABCD) and X� = (BDCA) is given by

distance(X�;X�) = j1� 4j+ j2� 1j+ j3� 3j+ j4� 2j

= 3 + 1 + 0 + 2

= 6:

Using the distance measure of Eq.(1), we de�ne the �tness function of the i-th individual as

�tness(i) = distance(Xi;XT ) + c � a(i)=N (2)

where Xi and XT are the output and target arrays, respectively, N is the total number of lattices, a(i) is
the number of rungs in the i-th individual, and c is a constant.
The smaller the �tness value of an individual, the closer the individual's permutation is to the target

permutation, i.e., the �tter the individual is. It is noted that the number of rungs becomes neutral with
respect to selection when it is not directly suppressed through Eq.(2), that is, when c = 0.
We �nally compose a GA using the genotype and the phenotype of a Ladder-Network and the �tness

function. A population which includes some individuals is prepared, and the rungs of each individual are
randomly placed. Each individual's �tness with respect to an imposed target is calculated by using the
�tness function. Then, the individuals for the next generation are selected in accordance with their �tness
values using so-called Elitist Selection described below, and reproduced.
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Figure 4: The encoding scheme of the genotype of the Ladder-Network.

In elitist selection, individuals in the top stream, as ranked by their �tness values, are always selected and
preserved for the population of the next generation. Individuals not selected are replaced with duplicates of
the selected ones, the number of individuals being constant between generations. Figure 5 shows an example
of the selection and duplication operations in our GA. First, the individuals are ranked by their �tness
values. The top 20% of the individuals, those which have lower �tness values, are selected and preserved.
The remaining 80% of the individuals are discarded. Four copies of individuals are made from each of
the preserved individuals, therefore, the number of individuals remains same as in the previous generation.
After selection and duplication, the crossover and mutation operations are applied on the genotypes of the
individuals. Crossover on the genotypes is accomplished by randomly selecting a certain number of pairs
of individuals and exchanging partial genes between each pair of individuals with a certain probability (the
crossover rate). Mutation on the genotypes is done by changing the values of the genes in all the individuals
with a certain probability (the mutation rate). A new population is prepared after mutation is completed,
and this population undergoes the same reproduction cycle again.
Summarizing, the GA that searches for a Ladder-Network structure performing a certain target permu-

tation works by iteratively applying the loop of �tness evaluation, selection, duplication, crossover, and
mutation (see Fig.6).

3 Results

3.1 Conditions of computer simulations

The scheme described above allows us to seek for a network of which the output is as near as possible to a
certain target. Computer simulations are done to test the adaptability of a population of Ladder-Networks
to a changing environment. Figure 7 shows an example of a task changing every M generations, where the
process of �nding one imposed input-output relation is called a task.
We carried out the simulations under the following conditions.

1. The size of the lattice of the Ladder-Network is 10 rows by 10 columns, giving a total of 100 bits as
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Figure 5: Selecting and Duplicating processes for a population.
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Figure 6: The owchart of the Genetic Algorithm procedure.
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Figure 7: An environmental condition changing every M generations.

6



Task Input Target
No. Generation string string

1 0 { 999 ABCDEFGHIJK CJADIEGKHFB

2 1000 { 1999 ABCDEFGHIJK BADHEIGFCKJ

3 2000 { 2999 ABCDEFGHIJK DGBKHCFJIAE

4 3000 { 3999 ABCDEFGHIJK AGJKHCBFIED

5 4000 { 4999 ABCDEFGHIJK GDEKJHCBFIA

6 5000 { 5999 ABCDEFGHIJK EJBCGIDFAHK
... ... ... ...

Figure 8: An example of a set of tasks.

genes.

2. The target permutation changes every M = 1000 generations.

3. The number of individuals in the population is 100.

4. The number of tasks is 40. Examples of tasks are shown in Fig.8.

5. The number of pairs of individuals randomly selected for crossover is 50.

6. The crossover rate is 0.2.

7. The mutation rate is 0.005.

8. The number of individuals preserved in each generation is 20.

In the following sections, we explore the adaptability of the GA in the case it includes neutrality and in
the case it does not. We include neutrality by setting c = 0 in Eq.(2) and leave it out by setting c > 0.
Selection of individuals is often very sensitive to the value of the �tness. This implies that some care is
necessary in setting the value of c in the case c > 0. In the case of elitist selection, which we employ here,
however, the �tness order of individuals is more important than the �tness itself for each individual to be
selected for the population of the next generation. The �tness order of individuals does not change when
0 < c < 2 because the minimum di�erence of distance(Xi;XT ) over all possible pairs Xi and XT always
exceeds the maximum over all c in the range (0; 2) of the value c � a(i)=N . We may thus choose any value
of c in the range (0; 2) without a�ecting the selection procedure in the GA. For convenience, we set c = 1.
The background for this choice is that, since 0 < a(i)=N < 1, the fractional part of the �tness value will be
due to the part c � a(i)=N in Eq.(2), whereas the integer part will be due to the part distance(X i;XT ) in
Eq.(2). This simpli�es comparison with the �tness value in the case c = 0, since that is only made up from
an integer part. This is of particular importance for meaningful comparison of simulations for the case c = 0
(the case including neutrality) with simulations for the case c > 0 (the case without neutrality).

3.2 Results of simulations

First, we show how well a population adapts to a nonstationary environment due to the inclusion of neutrality,
and compare the adaptability to the case when there is no neutrality in the genotypes of individuals. The
evolution of the �tness of the best individual in each generation is shown in Fig.9 for the cases including and
excluding neutrality. Note that individuals with lower �tness values are more adaptive. In both cases we
�nd that at every 1000 generations the value of the �tness becomes suddenly higher, i.e., the �tness becomes
suddenly worse. This phenomenon is caused by the change of task every 1000 generations. The value of the
�tness decreases in many tasks in the case there is neutrality, while it remains high in the case there is no
neutrality. Comparing these two results of the �tness (shaded areas), we see that individuals in the case
without neutrality (c = 1 in Eq.(2)) are less able to adapt their structures to the tasks that change over
time. The �rst term of fitness(i) being zero for a certain individual means that the individual causes the
same permutation as the imposed task: this is called the achievement of the task. From Fig.9, we count
the number of achieved tasks. The number of achievements in the case including neutrality is 31, and the
number in the case without neutrality is 6. The selection pressure on the number of rungs decreases the
activity of random genetic drift in each task and this makes the network lose its adaptability.

7



0 20000 40000
0

20

40

0 20000 40000
0

20

40

generation

fit
ne

ss
fit

ne
ss

generation

(a) with neutrality

(b) without neutrality

Figure 9: Evolution of �tness in the case including neutrality and in the case excluding neutrality, where the
region under the curve is shaded for ease of comparison of these two cases.
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In order to con�rm the reliability of the above di�erences in adaptability, the simulations in Fig.9 are
repeated for 100 kinds of initial populations under 40 di�erent task sequences. Figure 10 shows the histograms
for 4000 data points, each corresponding to the individual with the best �tness in each task(M = 1000).
Here, the fractional part of the �tness value that appears in the case there is no neutrality is omitted. From
Fig.10(a) we �nd that the number of cases at which a certain best �tness is achieved in the case there is
neutrality almost concentrates around zero, but in the case there is no neutrality, the number of cases is
almost uniformly spread over the range [0,20]. This indicates that the case there is neutrality is superior
in its adaptability as compared to the case there is no neutrality. A similar tendency of the di�erence in
adaptability is con�rmed by changing the crossover rate to 0:4 and the mutation rate to 0:01 as shown in
Fig.10(b).
Next, we investigate the e�ect of selection pressure on the structural diversity of the Ladder-Network.

The number of rungs in individuals is a measure for the structural di�erence, because individuals that have
di�erent numbers of rungs always have di�erent structures. Figure 11 shows the evolution of the number of
rungs of the best individual in each generation in the same simulation as in Fig.9. As to the number of rungs
in the case there is neutrality, it keeps uctuating even after the �tness falls to zero. This means that there
are more than one individuals with the same function and the diversity of individuals is kept even after the
task is achieved. On the contrary, in the case there is no neutrality, the number of rungs has the tendency
to be stationary in each task. In other words, the individuals are very similar to each other with respect to
the number of rungs, i.e., there is less diversity than in the case that includes neutrality.
In both cases, we see the number of rungs uctuating within about 30 rungs on the whole evolution process.

Especially, in the case including neutrality, the number of rungs changes within a certain range between 40
and 70, even though we do not control it, due to the setting c = 0 in Eq.(2). This large uctuation seems to
be caused by selection pressure, though the number of rungs is not a�ected directly. We prepare Fig.12 for
checking this phenomenon. This shows the changes of the average number of rungs in all individuals in the
absence of the selection operation. The absence of the selection operation corresponds to the situation that
only crossovers and mutations take place in the GA in Fig.6. The number of rungs reaches almost 50 (half
of the total number of lattice cells in an individual) on both the initial conditions of 20 and 80 rungs. This
is due to stochastic di�usion in the random mutation processes. From Fig.12, it is deduced that when the
selection operation is not employed at all during evolution, the number of rungs does not uctuate much. In
Fig.11 we see a similar tendency for the number of rungs to converge to 50 in the case including neutrality,
though there is more uctuation due to the selection operation.
In the above discussion, we have referred only to the number of rungs, but not to the actual structure

of the networks. Actually there can be several di�erent networks that have the same number of rungs. In
order to quantify structural changes of the individuals, we de�ne the di�erence between two networks, Di�,
as follows:

Di�(g(A); g(B)) =
H(g(A); g(B))

N
(3)

where H(g(A); g(B)) is the Hamming distance between genotypes of networks g(A) and g(B), and N is the
total number of bits in the genes of individuals.
To examine diversity, we calculate the value of Di� between individuals in the same generation. We

denote this Di� as Di�intra in the following discussion. From the data of Fig.9, for all combinations of two
individuals, Di�intra is calculated and the maximum value and average value of Di�intra are also calculated.
Figure 13 shows the maximum Di� and average Di� in the generations from 24000-th to 24030-th as a typical
example. The maximum value of Di�intra in the case including neutrality is 1.5 times as large as the value
in the case excluding neutrality from the 24003-th generation to the 24009-th generation. For each task,
the average of the maximum values of Di�intra for 30 generations from the generation that a new task is
imposed is calculated. Figure 14 shows the averages of the maximum values of Di�intra for all tasks. In this
�gure we see the tendency that the averages in the case including neutrality is higher than that in the case
excluding neutrality. By summing up Di�intra � the number of cases for each Di�intra of Fig.14, we get the
following quantities for the two cases.

with neutrality 0.092
without neutrality 0.076

These quantities equal the average value of Di�intra weighted over a total of 40000 generations. The average
value in the case including neutrality is about 20% larger than in the case excluding neutrality. This di�erence
between the two cases relates to the di�erences in performance of tracking environmental changes.
In order to discuss diversity further, we calculate Di� between di�erent generations. This is accomplished

by substituting the best individual in the t-th generation for A and the best individual in the (t � 1)-th
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Figure 10: Histograms of �tness values ( (a): crossover rate is 0.2 and mutation rate is 0.005, (b): crossover
rate is 0.4 and mutation rate is 0.01 ).
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Figure 11: Evolution of the number of rungs in the case including neutrality and in the case excluding
neutrality.
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Figure 15: Changes of Di�inter in the case there is neutrality and in the case there is no neutrality.

generation for B in Eq.(3): this Di� is denoted by Di�inter in the following. The Di�inter between the best
individual in the t-th generation and that in the (t � 1)-th generation is calculated from the data in Fig.9
for t in the interval [1; 39999]. Figure 15 shows the changes of Di�inter in the case including neutrality and
in the case without neutrality in a simulation with the same tasks as shown in Fig.9. The value of Di�inter
in the case there is neutrality is higher than in the case without neutrality. This means diversity in the case
including neutrality is retained better than in the case excluding neutrality, and this result shows as well as
in Fig.11.
Next, we explore the relation between adaptability and Di�inter . Figure 16 shows the changes of the

�tness and of Di�inter in two cases (with and without neutrality) in the neighborhood of the 18000-th
generation, which is the point of change from the 18-th task to the 19-th task, as a typical example. During
20 generations after the 18000-th generation, i.e., after the target string is changed, Di�inter in the case
including neutrality(solid line) changes more than in the case without neutrality(dotted line), indicating
that a population changes faster after a change of task in the case including neutrality. At the same time,
the �tness value decreases gradually to zero after a sudden increase at the change of task in the case
including neutrality. After the �tness becomes zero, a non-zero value of Di�inter sometimes appears in the
case including neutrality, while in the case excluding neutrality Di�inter remains zero. This phenomenon
shows that in the case including neutrality there exist several individuals whose �tness value is zero, and the
diversity in a population is maintained after the target permutation is found.
Finally, in Fig.17 we show the occurrence of Di�inter throughout the same process (40000 generations)

as in Fig.9. In the case including neutrality, Di�inter is substantially represented in the range of the larger
value of Di�(0:05 to 0:2), as compared to the case excluding neutrality.
By summing up Di�inter weighted by its occurrence in Fig.17, we get the following quantities for the two
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Figure 16: Changes of Di�inter and the �tness around 18000-th generation.

cases:

with neutrality 171
without neutrality 55

These quantities reect the degree of the structural diversity, and therefore, the degree of robustness against
changes in tasks, i.e., adaptability.
From these results we conclude that introducing neutrality increases the structural diversity in a population

and this leads to the formation of a population that can track environmental changes.

4 Discussion and Conclusion

In this paper we propose a GA with neutral variation that can track environmental changes, and demonstrate
the properties of this GA by applying it to a permutation problem. In the permutation problem, we represent
a permutation function as a Ladder-Network because it can include neutrality. We investigated to what
extent neutral factors make a di�erence as to the adaptability of the network structure for a nonstationary
task. By comparing the number of tasks �tting the evolution's target, we found that the adaptability in the
case including neutrality is much higher than that in the case excluding it. Furthermore, we measured the
structural diversity of both the case including neutrality and the case excluding neutrality, and conclude that
population diversity is maintained much better in the case including neutrality than in the case excluding
it. From these results, we conclude that adaptability can be enhanced by including a neutral factor in a
Genetic Algorithm.
The framework of our model is inspired by Kimura's neutral theory, but we do not intend to design a

strict biological model of neutral theory. Our purpose is rather to establish a framework for engineering
based on neutral theory or related theories and to explore the resulting adaptive properties. The Ladder-
Network lends itself well for the inclusion of neutrality in the permutation problem, and this is particularly
due to the �tness function being nonuniquely determined, i.e., the �tness function gives the same value for a
multitude of equivalent genotypes. The technique outlined in this paper of including neutrality in a problem
is applicable to other nonstationary GA as well, provided a suitable nonuniquely determined �tness function
can be de�ned.
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Figure 17: Histogram of Di�inter, where a zero frequency is omitted because of the logarithmic scale.
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