シダ植物中の重金属について

西岡洋*・小寺浩史*

要 旨
シダ植物の重金属含有量を調べるために、兵庫県内7地域に自生するシダ133試料を採取した。蛍光X線分析法および原子吸光分析法を用いて測定した結果、以下の事実を得た。
1）ウラジロ科のコンサやウラジロはいずれもマンガンについて比較的高いX線強度が得られた。
2）S1地域において採取したシガシマには数千ppmの鉱が含有されていた。
3）シガシマにおける鉱含有量は根茎、根および葉身の順に高かった。
キーワード：重金属、シダ、シガシマ

1. 緒 言
金属鉱山跡地のように土壌中の重金属濃度が高い特定の地域においては、ある種の植物が旺盛に生育している様子を見ることができる。このような植物の中には、重金属を体内に吸収してもタンパク質と結合するなどの方法で無害化しているものがある。ナットを蓄積する「グンバイナズナ」、カドミウムを蓄積する「ハクサタバサツ」や鉱を蓄積する「ホンモノジコケ」などは有名であり、このような植物は「重金属蓄積植物」とか「集積植物」などと呼ばれ数ppm。場合によってはバーセントレベルの重金属を蓄積しているため、植物を用いて環境修復を目指すファイトレメディエーションの面からも注目されている。一方、蓄積濃度は数十ppmであっても、蓄積する金属が金であるためヤブムラサキは金の指標植物とされてきた。
シダ植物では、亜鉛やカドミウムなどを蓄積する「ヘビノネゴザ」が古くから金属鉱床の指標植物として「金山草」という名前で知られており、研究対象となってている。また、ビ素を高濃度に蓄積する「モエジマシダ」はNatureで紹介されて話題となった。現在のところ、シダ植物においては、上記2種が広く知られている蓄積性植物であるが、日本に自生するシダ植物531は約630種と多種に渡ること。着生シダよりも地上生シダが多いこと。種によっては環境に適応しつつ急速に分布域を広げているものがあること、などを考慮すると特定の重金属を蓄積する能力を備えたシダは他にも存在することが考えられる。そこで、兵庫県内の7つの地域で比較的よく見られるシダを採取し、含有される重金属について予備的な調査を行ったので報告する。

2. 実 験
2.1 試 薬
金属イオン標准溶液：市販の原子吸光分析用標準液（1000mg/l）を適宜希釈して使用した。
その他の試薬は市販の特級品を使用し、水は脱イオン水を蒸留したものを使用した。
2.2 装 置
蛍光X線分析装置はリガックス製RIX2000を使用した。
測定条件は装置のプログラムに従った。
原子吸光分析装置は日本ジャーレルアッシュ製AA-880 mark IIを使用した。
2.3 サンプリング地域
サンプリングは2004年3月から7月にかけて行っ

*兵庫県立大学大学院工学研究科
Hiroshi NISHIOKA, Hiroyumi KODERA

2004年9月13日受理
2005年1月20日受理
た。サンプリング地域を図-1に示す。サンプリング地域のいくつかは鉱山跡地のように土壤中の重金属濃度が高いとされている7)地域（S1、S6、S7）であり、比較のため対照地域（S2、S3、S4、S5）も選んだ。

2.4 試料の前処理・分析法
2.4.1 定性分析
採取したシダの地上部（葉身）を流水で30秒程度洗った後、蒸留水で洗す。次に、細かく切ってビーカーに入れ、乾燥機で120℃、5時間乾燥した。乾燥後プレンダーで粉砕し、目開き300μmのふるいで通ったものを分析試料とし、蛍光X線分析用のホルダーに移し、表面をならした後ポリエチレンフィルムを被せて測定に供した。X線の照射径は10mmとした。なお、鉛はLa線、マンガン、鉄、銅および亜鉛はKα線の強度を測定した。

2.4.2 定量分析
はじめに後述の4つの方法により前処理した葉身について、試料1gを硝酸と塩酸で分解して分析試料とし、原子吸光法で亜鉛および鉛を分析した。また、後述のB法により前処理したシダの葉身、根茎、根について、部位ごとに亜鉛および鉛を分析した。

3. 結 果
3.1 定性分析結果
どのようなシダがどの程度の重金属を含有しているかを調べるために、蛍光X線強度を測定した。結果を表1に示す。133試料すべてにおいて検出されたのは必須元素の鉄であった。次に多くの試料で見られた元素はマンガンであり、49試料で検出された。亜鉛は47試料、鉛は29試料、鉄は11試料でそれぞれ検出された。

3.1.1 マンガン
鉄のX線強度よりもマンガンのX線強度が高かったシダとしてはウラジロ科のコンサとウラジロが顕著であった。ただし、これらが多くはS3地域のものであるため、土壤中のマンガン濃度を調べる必要がある。

3.1.2 鉄
鉄について高い蛍光X線強度を示したシダは、ジュウモンシダであり、ゼンマイ、ワラビ、ホソバシケシダおよびイノデにおいても高い値が認められた。この場合はS2地域が上位を占め、土壤中の鉄濃度を原子吸光分析により測定したところ100ppm以上の値も見られた。

3.1.3 亜鉛
亜鉛の場合は、S1とS6の地域にわたり鉱山跡地において高い値が得られた。シダの種類としては、ヘビノゲザとシンガシラの2種のシダが高い数値を示した。その他のシダとしては、イノデ、タニヘゴ、シケシダ、ヤマイタシダ等で比較的高い値が見られた。

3.1.4 鉛
鉛を含有しているシダはS1地域においてのみ認められた。シダの種類としては、シンガシラ、ヘビノゲザ、タニヘゴの3種であった。なお、前述のように、鉛に関してはKα線よりも感度の低いLa線の強度を測定しているため、表1において鉛の項目において「N.D.」が多い結果の一因となっているものと考えられる。そこで、次にシンガシラについて定量的な考察を加えることとした。

3.2 シンガシラ中の鉛と亜鉛の分析
3.2.1 試料洗浄法の検討
これまで、重金属の指標植物としての定的な傾向をできるだけ多くのシダ植物について検討するため、植物試料の洗浄も前述の簡単な簡単な洗浄に留めていたが、土壤からの微粒子などが植物表面に保持されていることを考慮すると、超音波洗浄や有機溶媒による洗浄が必要と考えられる。

洗浄方法による差異を調べるために、S1地域で新たに採取したシンガシラの同一株の葉を20秒間流水で洗浄し、蒸留水をすすいた後、3cm程度に切断

図-1 サンプリング地域

—302—
表1 シダ中に検出した重金属の蛍光X線強度（cps）

<table>
<thead>
<tr>
<th>地域</th>
<th>試料</th>
<th>Mn</th>
<th>Fe</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>イノダ</td>
<td>N.D.</td>
<td>45 N.D.</td>
<td>316 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>オオモモタリ</td>
<td>N.D.</td>
<td>41 N.D.</td>
<td>92 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>27</td>
<td>38</td>
<td>62</td>
<td>173</td>
<td>259</td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>31</td>
<td>73</td>
<td>62</td>
<td>1058</td>
<td>416</td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>47</td>
<td>93</td>
<td>630</td>
<td>337</td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>58</td>
<td>105</td>
<td>66 N.D.</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>37</td>
<td>56 N.D.</td>
<td>92 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>48 N.D.</td>
<td>174 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>95</td>
<td>136 N.D.</td>
<td>288</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>53</td>
<td>82 N.D.</td>
<td>159</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>36</td>
<td>43 N.D.</td>
<td>184</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>67</td>
<td>45 N.D.</td>
<td>202</td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>34</td>
<td>46 N.D.</td>
<td>112 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>51</td>
<td>68 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>セイモリ</td>
<td>N.D.</td>
<td>37 N.D.</td>
<td>68 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>タニベゴサワ</td>
<td>61</td>
<td>84</td>
<td>66</td>
<td>319</td>
<td>316</td>
</tr>
<tr>
<td>S1</td>
<td>タニベゴサワ</td>
<td>35</td>
<td>51 N.D.</td>
<td>108</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>タニベゴサワ</td>
<td>21</td>
<td>73 N.D.</td>
<td>93 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>82</td>
<td>97</td>
<td>165</td>
<td>130 N.D.</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ヒラモモタリ</td>
<td>N.D.</td>
<td>64 N.D.</td>
<td>236 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ヒラモモタリ</td>
<td>N.D.</td>
<td>59 N.D.</td>
<td>238 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ヒラモモタリ</td>
<td>69</td>
<td>55 N.D.</td>
<td>305</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ヒラモモタリ</td>
<td>34</td>
<td>83 N.D.</td>
<td>1754</td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>21</td>
<td>83</td>
<td>109 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>10</td>
<td>30 N.D.</td>
<td>314 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>フラリ</td>
<td>N.D.</td>
<td>31 N.D.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>フラリ</td>
<td>N.D.</td>
<td>47 N.D.</td>
<td>80 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>フラリ</td>
<td>N.D.</td>
<td>54</td>
<td>191</td>
<td>206 N.D.</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>イソダ</td>
<td>N.D.</td>
<td>45 N.D.</td>
<td>58 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>イソダ</td>
<td>N.D.</td>
<td>33 N.D.</td>
<td>70 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>イソダ</td>
<td>N.D.</td>
<td>71</td>
<td>403 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>イソダ</td>
<td>N.D.</td>
<td>62</td>
<td>125 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>52</td>
<td>124</td>
<td>190 N.D.</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>66 N.D.</td>
<td>117 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>49</td>
<td>67 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>N.D.</td>
<td>120</td>
<td>193 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>シラシガシラ</td>
<td>24</td>
<td>28</td>
<td>579 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ゼンマイ</td>
<td>51</td>
<td>34</td>
<td>438</td>
<td>64 N.D.</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ゼンマイ</td>
<td>32</td>
<td>31 N.D.</td>
<td>96 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ゼンマイ</td>
<td>27</td>
<td>54 N.D.</td>
<td>39 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>センマイ</td>
<td>N.D.</td>
<td>48</td>
<td>143 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ソノザクラ</td>
<td>30</td>
<td>49</td>
<td>372 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ソノザクラ</td>
<td>N.D.</td>
<td>61</td>
<td>72 N.D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>ソノザクラ</td>
<td>N.D.</td>
<td>67</td>
<td>71 N.D.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

脚注
採取した133試料のうち、以下の45試料は鉄以外のX線強度が検出されなかったため、表から除外した。S1地域は（イソダ2、シラシガシラ1、シラシガシラ2、ゼンマイ1、ムラサキ、ヤブツツビ、ヤマモモタリ）の8試料、S2地域は（イソダ2、ムラサキ12、シラシガシラ1236、ホホバキシオナ）の8試料、S3地域は（オオワラリ12、シラシガシラ13、スカイナラチ3、ベニシダ3、ヤブツツビ）の8試料、S4地域は（シラシガシラ、トラノオオナゴ、スカイナラチ、ホホバキク、ヤマモモタリ）の5試料、S5地域は（ムラサキ、シラシガシラ124、ゼンマイ2、ベニシダ2）の6試料、S6地域は（ムラサキ14、ヤブツツビ、ヤマモモタリ）の5試料、S7地域は（イソダ、クジャクシオ、タニチオナ、ヤマモモタリ）の4試料。シダの名称の後の番号は各地域におけるサンプリングの通し番号。

した。これらを薬剤別による重金属濃度の差が出ないようビーカー中で十分に混ぜ合わせ、そこから生重量として約8 gを取り出して精粋し、以下の洗浄方法で比較した。

A: これまでの洗浄方法として比較するため、さらなる洗浄は行わなかった。

B: 8 gの試料に100mlの蒸留水を加えて、5分間超音波洗浄した。洗浄後この100mlの洗浄水を10ml程度まで濃縮し、塩酸と硝酸で分解処理し、最終的に50mlにメスアップして原子吸光分析用の測定溶液とした。

C: Bと同様に100mlの蒸留水で5分間超音波洗浄し、後に蒸留水を別の容器に移し、新たに100mlのメタノールを加えて5分間超音波洗浄した。このメタノール洗浄100mlを先の洗浄水100mlに合わせて蒸発濃縮し、以下はBと同じ操作で原
子吸光分析用の測定溶液を製調した。
D：Cの操作のメタノール部分を0.1Mの塩酸に置き換えても同様の処理を施した。
試料洗浄方法の違いによる結果を表2に示す。表2より、Bの方法で洗浄することにより生重量1gあたり29μgの鉛が洗浄液中に検出されたことを考慮すると、流水による洗浄ののみでは不十分なことが分かった。
しかし、B法に引き続いてメタノールで超音波洗浄したC法では、メタノール洗浄液が緑色に着色したため、葉緑体が一部抽出されたものと考えられる。さらに、D法では0.1Mの塩酸を使用したため、洗浄液中の重金属濃度はさらに高くなり、組織が破壊され植物内部の重金属が抽出されているものと考えられる。したがって、C法やD法では植物組織内部の重金属も溶出している可能性が高いと考えられるので、以後の実験ではB法で洗浄した。
3.2.2 各部位ごとの鉛と亜鉛の濃度
新たにS1地域で3株のシシガサラを採取し、鉛と亜鉛を葉身、根茎（地下茎の一種）および根の3部分について分析した。結果を表3に示す。
鉛では根茎部分が最も高い値を示し、ついで根、葉身の順であった。各部位における鉛の比率は、
葉身：根茎：根 = 1 : 3.7 : 0.2 : 18 : 0.2
となり、個体や濃度が異なっていても類似した含有傾向が認められた。
一方、亜鉛の場合には試料2と3において根茎部分よりも鉛において高い値が見られた。また、試料1では葉生部分と根茎部分での亜鉛濃度に4倍以上の差があるのにに対し、試料2ではほとんど差がみれていな
ど、個体によって含有傾向に違いが見られた。これは植物体内における鉛と亜鉛の移動性の違いや周辺土壌中の可溶性有機物の差などさまざまな要因が考えられるため、今後詳細に検討する必要があると考えられる。なお、土壌中の重金属濃度が高いS1地域に生自するシシガサラが環境に適応するためには重金属耐性を発現しているから、それともどこに生じているシシガサラも潜在的に重金属耐性を備えているのかに関しては不明であるため、現在両者のカルスを用いて検討中である。
4. まとめ
2004年3月から7月にかけて、兵庫県内の7つの地域においてシダを採取し、重金属含有傾向について調べた。その中で得られた結果を以下に示す。
1）ウラジロ科のシシガラやウラジロはマンガンについて比較的高いX線強度が得られた。
2）S1地域において採取したシシガサラには数千 ppm の鉛が含有されていた。
3）シシガサラにおける鉛含有量は根茎、根および葉身の順に高かった。
今回の調査はシダ植物の重金属含有性に関する予備的な調査であり定性的な結果が多いため、洗浄方法や土壌分析結果をも含めて今後詳細な検討を加える必要がある。

参考文献
1）岩崎邦男編：日本の野生植物シダ、平凡社（2002）
2）岩崎邦男：シダ植物の自然史、東京大学出版会（1996）
3）光村重幸：強の見間、保育社（2003）
4）阿部正敏：葉によるシダの検索図鑑、誠文堂新光社（2001）
5）岩崎善之助： cosa、山と溪谷社（2002）
6）浅見輝男：データで示す日本土壤の有害金属汚染、アグネ技術センター（2002）
7）日本土壤科学会編：土壤の有害金属汚染、博友社（2001）
8）環境庁水質保全局水質管理課編：底質汚染方法とその解説、丸善（1996）

表2 シシガサラ葉身の洗浄方法による違い

<table>
<thead>
<tr>
<th>洗浄方法</th>
<th>葉身中の重金属（μg/g-raw）</th>
<th>洗浄液中の重金属（μg/g-raw）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zn</td>
<td>Pb</td>
</tr>
<tr>
<td>A</td>
<td>190</td>
<td>360</td>
</tr>
<tr>
<td>B</td>
<td>130</td>
<td>300</td>
</tr>
<tr>
<td>C</td>
<td>120</td>
<td>280</td>
</tr>
<tr>
<td>D</td>
<td>85</td>
<td>270</td>
</tr>
</tbody>
</table>

※シシガサラ葉身から溶出した重金属の質量を生重量1gあたりに換算したもの。

表3 シシガサラ中の鉛および亜鉛

<table>
<thead>
<tr>
<th>部位</th>
<th>試料1</th>
<th>試料2</th>
<th>試料3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
<td>Pb</td>
<td>Pb</td>
</tr>
<tr>
<td>葉身</td>
<td>1560</td>
<td>700</td>
<td>2750</td>
</tr>
<tr>
<td>根茎</td>
<td>5450</td>
<td>3000</td>
<td>9640</td>
</tr>
<tr>
<td>根</td>
<td>2470</td>
<td>2130</td>
<td>4930</td>
</tr>
</tbody>
</table>

単位は ppm（μg/g-dry）